|
1. |
Proceedings of the Society of Public Analysts and other Analytical Chemists |
|
Analyst,
Volume 58,
Issue 682,
1933,
Page 1-2
Preview
|
PDF (97KB)
|
|
摘要:
JANUARY 1933 Vol. LVIII. No. 682 THE ANALYST PROCEEDINGS OF THE SOCIETY OF PUBLIC ANALYSTS AND OTHER ANALYTICAL CHEMISTS AN Ordinary Meeting of the Society was held at the Chemical Society’s Rooms, Burlington House on Wednesday December 7th. The President Mr. F. W. F. Arnaud took the chair for the first part of the meeting his place being subsequently taken by Mr. John Evans Vice-president. Certificates were read in favour of Clifford Kenneth Boundy A.I.C. Raphael Heber Callow M.Sc. A.I.C. Miles Ernest Catt-Camfield John Dewar B.Sc., Clifford Walter Herd B.Sc. Ph.D. F.I.C. Henry Humphreys Jones F.I.C. and Frederick Leigh Okell F.I.C. The following were elected Members of the Society :-Ernest Edward Unwin Abraham B.Sc. F.I.C. Enid A. M. Bradford B.Sc. Frank Brookhouse B.Sc., A.I.C.Gerald Harry Edwards B.Sc. A.I.C. Jack Firth A.I.C. Albert E. Fletcher, F.I.C. Patrick Sarsfield MacMahon M.Sc. F.I.C. Moses Puffeles Edgar Alexander Raynor B.Sc. A.I.C. Bernard Joseph Styles Viscount Tiverton Cecil Edgar Wiseman B.Sc. A.I.C. A.C.G.F.C. The following papers were read and discussed:-“ Further Notes on the Identification of Woods and Charcoals,” by J. Cecil Maby B.Sc.; “The Charac-teristics of Millet Oil,” by Winifred E. Smith B.Sc. A.I.C. and Edith K. Waller, B.Sc. (Work done zcnder the Society’s Analytical Investigation Scheme) ; ‘‘ The Stability of Vitamin A in Cod-liver Oil Emulsions,” by H. N. Griffiths B.Sc., T. P. Hilditch DSc. F.I.C. and J. Rae; “The Validity of the Lovibond Tintometer Method in the Assay of Vitamin A,” by E.Lester Smith MSc. A.I.C.; and “Some Properties of Ergosterol and Calciferol,” by A. L. Bacharach B.A. F.I.C., E. Lester Smith M.Sc. A.I.C. and S. G. Stevenson B.Sc. B.Pharm. F.I.C. NORTH OF ENGLAND SECTION A MEETING of the Section was held in Sheffield on December 3rd. The Chairman (Mr. J. Evans) presided over an attendance of thirty-nine. Prof. W. H. Roberts gave a brief account of the career of the late A. Chaston Cfiapman F.R.S. F.I.C., and an appreciation of his life and work. The following papers were read and discussed :-“ The Estimation of the Sizes of Particles in Chocolate,” by H. M. Mason M.Sc. F.I.C. and “A Note on the 2 MOFFITT A COLORIMETRIC METHOD FOR THE DETERMINATION OF CHLOROFORM Composition of some Fatty Material found in Ancient Egyptian Tombs,’’ by A. Banks Ph.D. and T. P. Hilditch D.Sc. F.I.C. Reminiscences of the days spent in the laboratory of A. H. Allen were con-tributed by Messrs. J. Evans A. R. Tankard and s. E. Melling. Some interesting exhibits were shown including a photograph of Dr. James Allan the predecessor of A. H. Allen and also the original manuscript of Volume I of the first edition of Allen’s Commercial Organic Analysis
ISSN:0003-2654
DOI:10.1039/AN9335800001
出版商:RSC
年代:1933
数据来源: RSC
|
2. |
A colorimetric method for the determination of chloroform |
|
Analyst,
Volume 58,
Issue 682,
1933,
Page 2-4
W. G. Moffitt,
Preview
|
PDF (163KB)
|
|
摘要:
2 A Colorimetric Method for the Determination of Chloroform BY W. G. MOFFITT PH.D. A.I.C. (Read at the Meeting October 5 1932) THE colour reaction described by Lustgarten (Monatsh. Chem. 1882 3 715) between chloroform and a- or /?-naphthol in strong potassium hydroxide solution lends itself to the rapid colorimetric determination of chloroform. The method whilst of limited accuracy can be used with advantage where methods based upon the action of alcoholic potash on chloroform break down owing to the presence of other readily decomposed chloro-compounds. When this reaction is used for the detection of chloroform Lustgarten recom-mended that it should be carried out at a temperature of 50" C. when it gives rise to an intense Prussian blue colour. For comparative work it is better to allow the reaction to proceed at room temperature when the colours are found to be of satisfactory depth and with 0.001 to 0.003 ml.of pure chloroform to form a well-graded series increasing in intensity with the concentration of the chloroform. The utility of the method is determined chiefly by the strength of the potassium hydroxide solution. This controls the sensitivity of the reaction the rate at which the colours fade and in part the value of the reaction as a specific test for chloroform. The reaction has been studied with both a- and /?-naphthol; although the former appears to be the more sensitive reagent /?-naphthol gives better colours and is less liable to interference by other compounds. SOLUTIONS REQUIRED-1. 2.0 grms. of /3-naphthol dissolved in 100 ml.of 40 per cent. cold potassium hydroxide solution. 2. A standard solution (0.5 per cent. by volume) of chloroform dissolved in industrial methylated spirit (95 per cent. of ethyl alcohol). PROCEDURE-Ten ml. of the /?-naphthol solution are measured into each of several Nessler glasses ; measured volumes of the standard chloroform solution are then added to each tube and sufficient industrial methylated spirit to make the total volume 11.0 ml. (In practice the methylated spirit is added before the chloroform and both are delivered with the tip of the pipette dipping slightl NOFFITT A COLORIMETRIC METHOD FOR THE DETERMINATION OF CHLOROFORM 3 below the surface of the liquid.) for 5 to 10 minutes. The tubes are then shaken and allowed to stand Example.Number of tube 1. 2. 3. 4. 5. Naphthol solution ml. . . . . 10.0 10.0 10.0 10.0 10.0 Industrial methylated spirit ml. . . . . 0.8 0.7 0.6 0.5 0.4 Chloroform (0.5 per cent. solution) ml. . . 0.2 0.3 0.4 0-5 0.6 Colour intensities as ratios . . 1.8 3.0 4.0 5.0 6.2 The ratios of the colour intensities were measured by means of a Duboscq colorimet er. Experiments were carried out to determine how far other chloro-compounds interfered with the method. The following compounds were studied :-Methylene chloride (b.pt. 41.6" C.) ; acetylene dichloride (b.pt. 55" C.) ; ethylidene chloride (b.pt. 59.9" C.) ; carbon tetrachloride (b.pt. 76.7" C.) ; ethylene chloride (b.pt., 83.7" C.) ; trichloroethylene (b.pt. 87.1" C.) ; dichloroethyl ether (sym.) (b.pt., 178" C.).With carbon tetrachloride a blue colour was obtained with a-naphthol; this colour was intensified by the presence of acetone. No colour was obtained with 13-naphthol and any of these compounds. Acetone was found to have no interfering effect when 13-naphthol was used. Slight variations were observed in the chloroform tubes when some of the above compounds were present in large excess but these variations were observed with 13-naphthol only after the solutions had been standing for more than ten minutes. ANALYSES OF FRESHLY-PREPARED MIXTURES No. Composition (by vol.) 1. Chloroform Industrial methylated spirit 2. Chloroform Industrial methylated spirit 3. Chloroform Methylene chloride Acetylene dichloride Industrial methylated spirit 4.Chloroform Met hylene chloride Carbon tetrachloride Industrial methylated spirit 5. Chloroform Lin. belladonnae 6. Chloroform Lin. belladonnae Lin. aconiti Per Cent. 8.0 92.0 5.4 94.6 3.3 6.6 3.3 86.8 8.3 20.0 20.0 51-7 12-5 87.5 20.0 40.0 40.0 Chloroform (by vol.) found Per Cent. 8.0 5.4 (i) 3.4 (ii) 3-5 8.3 (i) 12-2 (ii) 12.8 19. 4 NICHOLLS THE DETERMINATION OF BENZOYL PEROXIDE IN FLOUR A small volume (usually 3 to 5 ml.) of the sample under examination should first be distilled with 75 ml. of methylated spirit. At least 50 ml. of distillate should be collected to ensure the distillation of all the chloroform. The distillate should then be treated in the manner described above and the colours compared with those obtained with the standard solutions of chloroform treated at the same time. (It is essential that comparison be made within a few minutes.) SUMMARY-Conditions are given for the colorimetric determination of chloroform by means of 13-naphthol in strong potassium hydroxide solution. None of seven chloro-compounds was found to have an appreciable influence on the reaction. I am indebted to the Government Chemist for permission to publish this note and to Mr. G. F. Sheppard for advice. THE GOVERNMENT LABORATORY, LONDON W.C.
ISSN:0003-2654
DOI:10.1039/AN9335800002
出版商:RSC
年代:1933
数据来源: RSC
|
3. |
The determination of benzoyl peroxide in flour |
|
Analyst,
Volume 58,
Issue 682,
1933,
Page 4-7
John Ralph Nicholls,
Preview
|
PDF (286KB)
|
|
摘要:
294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected.The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results.The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable.The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm.Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected.Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm.in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic.This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm.of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased.The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm.up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation.Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity.CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C.of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.
ISSN:0003-2654
DOI:10.1039/AN9335800004
出版商:RSC
年代:1933
数据来源: RSC
|
4. |
The freezing-point of pasteurised and sterilised milks |
|
Analyst,
Volume 58,
Issue 682,
1933,
Page 7-10
G. D. Elsdon,
Preview
|
PDF (264KB)
|
|
摘要:
294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected.The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results.The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable.The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm.Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected.Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm.in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic.This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm.of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased.The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm.up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation.Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity.CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C.of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.
ISSN:0003-2654
DOI:10.1039/AN9335800007
出版商:RSC
年代:1933
数据来源: RSC
|
5. |
An investigation into the electrolytic separation of lead as peroxide in non-ferrous alloys. I. A new method for the determination of small amounts of lead in copper and copper-rich alloys |
|
Analyst,
Volume 58,
Issue 682,
1933,
Page 11-26
B. Jones,
Preview
|
PDF (1339KB)
|
|
摘要:
294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected.The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results.The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable.The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm.Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected.Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm.in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic.This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm.of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased.The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm.up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation.Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity.CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C.of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view.Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned.Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium.Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms.of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view.Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium.Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C.of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm.in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable.The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm.of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased.The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms.give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation.Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium.Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased.The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm.up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes.Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium.Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline.Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present.Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms.of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C.of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide.A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable.The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm.Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected.Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C.the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic.This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters.It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased.The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence.Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation.Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity.CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C.of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present.Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned.Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium.Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C.of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view.Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms.of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm.in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results.The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable.The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm.Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.
ISSN:0003-2654
DOI:10.1039/AN9335800011
出版商:RSC
年代:1933
数据来源: RSC
|
6. |
Notes |
|
Analyst,
Volume 58,
Issue 682,
1933,
Page 26-29
F. M. Hamer,
Preview
|
PDF (366KB)
|
|
摘要:
294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected.The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results.The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable.The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm.Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected.Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm.in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic.This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm.of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased.The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm.up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation.Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity.CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C.of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.
ISSN:0003-2654
DOI:10.1039/AN9335800026
出版商:RSC
年代:1933
数据来源: RSC
|
7. |
Official appointments |
|
Analyst,
Volume 58,
Issue 682,
1933,
Page 29-29
Preview
|
PDF (21KB)
|
|
摘要:
294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected.The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results.The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.
ISSN:0003-2654
DOI:10.1039/AN9335800029
出版商:RSC
年代:1933
数据来源: RSC
|
8. |
Bibliography on heavy metals in food and biological material |
|
Analyst,
Volume 58,
Issue 682,
1933,
Page 30-33
Preview
|
PDF (316KB)
|
|
摘要:
294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected.The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results.The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable.The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm.Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected.Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm.in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic.This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm.of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased.The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm.up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation.Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity.CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C.of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.
ISSN:0003-2654
DOI:10.1039/AN933580030b
出版商:RSC
年代:1933
数据来源: RSC
|
9. |
Notes from the Reports of Public Analysts |
|
Analyst,
Volume 58,
Issue 682,
1933,
Page 33-35
H. H. Bagnall,
Preview
|
PDF (246KB)
|
|
摘要:
294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected.The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results.The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable.The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm.Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected.Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm.in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic.This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm.of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased.The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.
ISSN:0003-2654
DOI:10.1039/AN9335800033
出版商:RSC
年代:1933
数据来源: RSC
|
10. |
Report of the Government Chemist upon the work of the Government Laboratory. For the year ending 31st March, 1932 |
|
Analyst,
Volume 58,
Issue 682,
1933,
Page 35-37
Preview
|
PDF (225KB)
|
|
摘要:
294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected.The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results.The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable.The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm.Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm. of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected.Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased. The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm.in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic.This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.294 EVERS: THE DETECTION OF SMALL QUANTITIES OF CALCIUM Adding 5 mgrms. of calcium. Added salts. Result. No added salt. Immediate pptn. Sodium chloride, 1 grm. Borax, 1 grm. Sodium potassium tartrate, 1 grm. Potassium citrate, 1 grm. Variations in the concentration of the reagents did not appreciably improve matters. It was found that even 0.25 grm.of potassium citrate in 60 C.C. of solution prevented the precipitation of 2 mgrms. of calcium. Further complications would be introduced if magnesium were also present in the salt as an impurity. CALCIUM OLEATE TEsT.-The formation of an opalescence on the addition of sodium oleate solution to a solution is an extremely delicate test for calcium. Under the best conditions 0.01 mgrm. of calcium in 50 C.C. of solution, or 0.00002 per cent., can just be detected. The test is also, of course, a test for magnesium, but is much less sensitive, 0-6 mgrm. in 50 C.C. of solution, or 0-0012 per cent., being the minimum quantity which can be detected. Further, within certain limits of concentration the pre- cipitation of magnesium is entirely suppressed in the presence of potassium citrate, whilst the sensitiveness of the calcium test is actually increased.The best conditions for the detection of calcium were found to be as follows: Take 50 C.C. of the solution containing calcium, which should be neutral or slightly alkaline. Dissolve in it 2 grms. of potassium citrate, and add 0-3 C.C. of a solution prepared by dissolving 10 grms. of oleic acid in 200 C.C. of 1 per cent. sodium hydroxide. A certain excess of alkali is desirable for the best results. The test is only satisfactory between certain limits of calcium concentration. With quantities exceeding 1 mgrm. in 60 C.C. the opalescence is actually reduced. Under the above conditions quantities of mag- nesium up to 15 mgrms. give no opalescence. Summarising the results, the oleate test is excellent for quantities of calcium varying from 0-01 mgrm. up to 1 mgrm. in the absence of more than 10 mgrms. of magnesium, and within these limits in the absence of other salts the opalescence appears proportional to the calcium present. Further experiments showed, however, that, in spite of its delicacy, the oleate test is not suitable for the purpose in view. Possibly, if the test could be carried out, using standards containing the same concentration of the same salt, it would be satisfactory, but this is hardly practicable. The addition of other salts, even in the absence of potassium citrate, caused the results to be erratic. This was partly due to their “salting out ” effect on the soap, which sometimes caused flocculation, but this was not the whole explanation. Almost immediate pptn. Slight ppt. after 30 minutes. Slight ppt. after 30 minutes. No ppt. This line of investigation was therefore abandoned. Mix and allow the mixture to stand. An excess of the reagent gives less opalescence.
ISSN:0003-2654
DOI:10.1039/AN9335800035
出版商:RSC
年代:1933
数据来源: RSC
|
|